Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.579
Filtrar
1.
Curr Protoc ; 4(4): e1023, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606936

RESUMO

Necroptosis is a form of inflammatory lytic cell death involving active cytokine production and plasma membrane rupture. Progression of necroptosis is tightly regulated in time and space, and its signaling outcomes can shape the local inflammatory environment of cells and tissues. Pharmacological induction of necroptosis is well established, but the diffusive nature of chemical death inducers makes it challenging to study cell-cell communication precisely during necroptosis. Receptor-interacting protein kinase 3, or RIPK3, is a crucial signaling component of necroptosis, acting as a crucial signaling node for both canonical and non-canonical necroptosis. RIPK3 oligomerization is crucial to the formation of the necrosome, which regulates plasma membrane rupture and cytokine production. Commonly used necroptosis inducers can activate multiple downstream signaling pathways, confounding the signaling outcomes of RIPK3-mediated necroptosis. Opsin-free optogenetic techniques may provide an alternative strategy to address this issue. Optogenetics uses light-sensitive protein-protein interaction to modulate cell signaling. Compared to chemical-based approaches, optogenetic strategies allow for spatiotemporal modulation of signal transduction in live cells and animals. We developed an optogenetic system that allows for ligand-free optical control of RIPK3 oligomerization and necroptosis. This article describes the sample preparation, experimental setup, and optimization required to achieve robust optogenetic induction of RIPK3-mediated necroptosis in colorectal HT-29 cells. We expect that this optogenetic system could provide valuable insights into the dynamic nature of lytic cell death. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Production of lentivirus encoding the optogenetic RIPK3 system Support Protocol: Quantification of the titer of lentivirus Basic Protocol 2: Culturing, chemical transfection, and lentivirus transduction of HT-29 cells Basic Protocol 3: Optimization of optogenetic stimulation conditions Basic Protocol 4: Time-stamped live-cell imaging of HT-29 lytic cell death Basic Protocol 5: Quantification of HT-29 lytic cell death.


Assuntos
Optogenética , Transdução de Sinais , Humanos , Animais , Morte Celular/genética , Células HT29 , Citocinas
2.
Eur J Med Chem ; 270: 116377, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581731

RESUMO

Evading the cellular apoptosis mechanism by modulating multiple pathways poses a sturdy barrier to effective chemotherapy. Cancer cell adeptly resists the apoptosis signaling pathway by regulating anti and pro-apoptotic proteins to escape cell death. Nevertheless, bypassing the apoptotic pathway through necroptosis, an alternative programmed cell death process, maybe a potential therapeutic modality for apoptosis-resistant cells. However, synthetic mono-quinoxaline-based intercalator-induced cellular necroptosis as an anti-cancer perspective remains under-explored. To address this concern, we undertook the design and synthesis of quinoxaline-based small molecules (3a-3l). Our approach involved enhancing the π-surface of the mandatory benzyl moiety to augment its ability to induce DNA structural alteration via intercalation, thereby promoting cytotoxicity across various cancer cell lines (HCT116, HT-29, and HeLa). Notably, the potent compound 3a demonstrated the capacity to induce DNA damage in cancer cells, leading to the induction of ZBP1-mediated necroptosis in the RIP3-expressed cell line (HT-29), where Z-VAD effectively blocked apoptosis-mediated cell death. Interestingly, we observed that 3a induced RIP3-driven necroptosis in combination with DNA hypomethylating agents, even in the RIP3-silenced cell lines (HeLa and HCT116). Overall, our synthesized compound 3a emerged as a promising candidate against various cancers, particularly in apoptosis-compromised cells, through the induction of necroptosis.


Assuntos
Necroptose , Neoplasias , Humanos , Quinoxalinas/farmacologia , Apoptose , Células HT29 , DNA/farmacologia , Necrose/induzido quimicamente , Proteínas Quinases/metabolismo
3.
Oncol Rep ; 51(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38456489

RESUMO

α­Phellandrene (α­PA), a natural constituent of herbs, inhibits cancer cell viability and proliferation. 5­Fluorouracil (5­FU) is a frequently utilized chemotherapeutic medicine for the treatment of colon cancer, which works by triggering cancer cell apoptosis. The present study examined how the combination of α­PA and 5­FU affects the suppression of human colon cancer cells by promoting apoptosis. The impact of this treatment on cell viability, apoptosis, and the expression levels of Bcl­2 family members, caspase family members and mitochondria­related molecules in HT­29 cells was assessed by the MTT assay, immunocytochemistry, western blotting and quantitative PCR. The combination of 5­FU and α­PA had a synergistic inhibitory effect on cell viability, as determined by assessing the combination index value. Bax protein expression levels were higher in the 50, 100 or 250 µM α­PA combined with 5­FU groups compared with those in the 5­FU alone group (P<0.05). By contrast, Bcl­2 protein expression levels and mitochondrial membrane potential (MMP, ΔΨm) were lower in the 100 or 250 µM α­PA combined with 5­FU groups than those in the 5­FU alone group (P<0.05). In addition, hexokinase­2 (HK­2) protein expression levels were lower in the 50, 100 or 250 µM α­PA combined with 5­FU groups than those in the 5­FU alone group (P<0.05). Compared with 5­FU alone, after HT­29 cells were treated with 50, 100 or 250 µM α­PA combined with 5­FU, the mRNA expression levels of extrinsic­induced apoptotic molecules, including caspase­8 and Bid, were higher (P<0.05). Treatment with 50, 100 or 250 µM α­PA combined with 5­FU also increased the mRNA expression levels of cytochrome c, caspase­9 and caspase­3, regulating intrinsic apoptosis (P<0.05). These results showed that α­PA and 5­FU had a synergistic effect on reducing the viability of human colon cancer HT­29 cells by inducing extrinsic and intrinsic apoptosis pathways. The mechanism by which apoptosis is induced may involve the intrinsic apoptosis pathway that activates the mitochondria­dependent pathway, including regulating the expression levels of Bcl­2 family members, including Bax, Bcl­2 and Bid, regulating MMP and HK­2 expression levels, and increasing the expression of caspase cascade molecules, including caspase­9 and caspase­3. In addition, it may involve the extrinsic apoptosis pathway that activates caspase­8 and caspase­3 leading to apoptosis.


Assuntos
Neoplasias do Colo , Monoterpenos Cicloexânicos , Fluoruracila , Humanos , Fluoruracila/farmacologia , Caspase 3 , Caspase 9 , Caspase 8 , Células HT29 , Apoptose , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Caspases , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro
4.
Mol Biol Rep ; 51(1): 418, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483678

RESUMO

BACKGROUND: The present work demonstrated the green synthesis and characterization of silver nanoparticles (AgNPs) utilizing Elaeocarpus serratus fruit extract. The study examined the effectiveness of phytocompounds in fruit extract in reducing Ag+ to Ag° ions. METHODS: The water-soluble biobased substance production from silver ions to AgNPs in 45 min at room temperature. Surface plasmon resonance (SPR) peak was seen in the UV-visible absorption spectrum of the biologically altered response mixture. Examination with X-ray diffraction (XRD) showed that AgNPs are strong and have a face-centered cubic shape. Scanning electron microscope (SEM) investigation proved the production of AgNPs in a cuboidal shape. RESULTS: The AgNPs demonstrated remarkable antibacterial activity and a potent capacity to neutralize DPPH (2,2-Diphenyl-1-picrylhydrazyl) radicals. The highest growth inhibition was found for E. serratus against S. dysenteriae (18.5 ± 1.0 mm) and S. aureus (18 ± 1.2 mm). These nanoparticles exhibited robust antiradical efficacy even at low concentrations. The AgNPs additionally exhibited cytotoxic effects on (HT-29) human colon adenocarcinoma cancer cells. The MTT assay (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) indicated an inhibitory concentration (IC50) value of 49.1 ± 2.33 µg/mL for AgNPs, contrasting with the untreated cells of the negative control. The biotoxicity assessment using A. salina displayed mortality rates ranging from 8 to 69.33%, attributable to the E. serratus synthesized AgNPs. CONCLUSIONS: In our results concluded that simply first-hand information on that E. serattus fruit extract synthesized AgNPs were efficiently synthesized without the addition of any hazardous substances, and that they may be a strong antibacterial, antioxidant, and potential cytotoxic effects for the treatment of colon carcinoma cell lines.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias do Colo , Nanopartículas Metálicas , Animais , Humanos , Prata/química , Antioxidantes/química , Artemia , Nanopartículas Metálicas/química , Frutas/química , Staphylococcus aureus , Neoplasias do Colo/tratamento farmacológico , Antibacterianos , Antineoplásicos/farmacologia , Antineoplásicos/química , Células HT29 , Íons , Extratos Vegetais/farmacologia , Extratos Vegetais/química
5.
BMC Cancer ; 24(1): 371, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528462

RESUMO

BACKGROUND: The need for intelligent and effective treatment of diseases and the increase in drug design costs have raised drug repurposing as one of the effective strategies in biomedicine. There are various computational methods for drug repurposing, one of which is using transcription signatures, especially single-cell RNA sequencing (scRNA-seq) data, which show us a clear and comprehensive view of the inside of the cell to compare the state of disease and health. METHODS: In this study, we used 91,103 scRNA-seq samples from 29 patients with colorectal cancer (GSE144735 and GSE132465). First, differential gene expression (DGE) analysis was done using the ASAP website. Then we reached a list of drugs that can reverse the gene signature pattern from cancer to normal using the iLINCS website. Further, by searching various databases and articles, we found 12 drugs that have FDA approval, and so far, no one has reported them as a drug in the treatment of any cancer. Then, to evaluate the cytotoxicity and performance of these drugs, the MTT assay and real-time PCR were performed on two colorectal cancer cell lines (HT29 and HCT116). RESULTS: According to our approach, 12 drugs were suggested for the treatment of colorectal cancer. Four drugs were selected for biological evaluation. The results of the cytotoxicity analysis of these drugs are as follows: tezacaftor (IC10 = 19 µM for HCT-116 and IC10 = 2 µM for HT-29), fenticonazole (IC10 = 17 µM for HCT-116 and IC10 = 7 µM for HT-29), bempedoic acid (IC10 = 78 µM for HCT-116 and IC10 = 65 µM for HT-29), and famciclovir (IC10 = 422 µM for HCT-116 and IC10 = 959 µM for HT-29). CONCLUSIONS: Cost, time, and effectiveness are the main challenges in finding new drugs for diseases. Computational approaches such as transcriptional signature-based drug repurposing methods open new horizons to solve these challenges. In this study, tezacaftor, fenticonazole, and bempedoic acid can be introduced as promising drug candidates for the treatment of colorectal cancer. These drugs were evaluated in silico and in vitro, but it is necessary to evaluate them in vivo.


Assuntos
Neoplasias Colorretais , Ácidos Dicarboxílicos , Reposicionamento de Medicamentos , Ácidos Graxos , Humanos , Reposicionamento de Medicamentos/métodos , Células HT29 , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética
6.
Eur J Med Chem ; 269: 116351, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38547734

RESUMO

Checkpoint kinase 1 (CHK1) plays a crucial role in the DNA damage response pathway, making it an attractive target for cancer therapy. Herein, we present the synthesis, optimization, and evaluation of selective CHK1 inhibitors with a pyrido[3,2-d]pyrimidin-6(5H)-one scaffold. Among them, compound 11 showed single-digit nanomolar potency against CHK1 (IC50: 0.55 nM) with good kinase selectivity. Notably, 11 showed anti-proliferative effect in MV-4-11 cells singly (IC50 = 202 nM) and a synergistic effect in combination with gemcitabine in HT-29 cells (IC50 = 63.53 nM). Furthermore, the combination of 11 and gemcitabine exhibited synergistic effect in the HT-29 xenograft mouse model. Overall, this work provides a strong foundation for the development of selective CHK1 inhibitors and the therapeutic strategy for cancer.


Assuntos
Gencitabina , Inibidores de Proteínas Quinases , Humanos , Camundongos , Animais , Quinase 1 do Ponto de Checagem , Células HT29 , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral
7.
Food Funct ; 15(7): 3496-3506, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38463011

RESUMO

A potential osteogenic tetradecapeptide with the amino acid sequence GETNPADSKPGSIR (P-GM-2) was identified from Gadus morhua. The present study aimed to elucidate its absorption and transport properties using Caco-2/HT29-MTX co-culture monolayers and to evaluate its osteogenic activity using an ovariectomized mouse model. The results showed that P-GM-2 could cross Caco-2/HT29-MTX co-culture barriers intactly with an apparent permeability coefficient of 4.02 × 10-6 cm s-1via the TJ-mediated passive paracellular pathway. Pharmacokinetic results revealed that P-GM-2 was detectable in the blood of mice within 5 min of oral administration and reached its maximum concentration at 30 min. Furthermore, the oral administration of P-GM-2 for a duration of three months has been found to effectively regulate the secretion of key markers of bone turnover, thereby protecting against bone microstructure degeneration and bone loss in ovariectomized mice. Importantly, no toxicity related to the treatment was observed. Taken together, these findings offer valuable insights into the absorption and transport mechanisms of P-GM-2, highlighting its potential as a safe and effective active ingredient for preventing osteoporosis.


Assuntos
Absorção Intestinal , Peptídeos , Humanos , Camundongos , Animais , Células CACO-2 , Absorção Intestinal/fisiologia , Células HT29 , Permeabilidade , Peptídeos/farmacologia , Peptídeos/metabolismo , Transporte Biológico/fisiologia
8.
J Med Food ; 27(3): 211-221, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407926

RESUMO

Colorectal cancer is a widespread neoplasia with high ratios of chemoresistance. Phytochemicals in plant-based extracts could be useful to treat colorectal cancer, and/or reduce chemoresistance. Methanolic extract of avocado mesocarp (MEAM) has demonstrated antitumoral properties, depending on the fruit ripening stage (RS). The aim of this study was to analyze the effects of methanolic extracts of "Hass" avocado fruit at different RS on cytotoxicity, antioxidative, anti-inflammatory, anti-invasive, cell cycle, and epithelial-mesenchymal transition inhibition in colorectal adenocarcinoma cell line HT29. The MEAM showed an increasing concentration of total phenolic compounds as the RS progressed, which was correlated with antioxidant capacity measured by the Ferric Reducing Antioxidant Power assay but not with the 2.2-diphenyl-1-picrylhydrazyl assay. The specific phenolic compounds of MEAM were determined by high-performance liquid chromatography, and it was found that concentrations of epicatechin decreased while concentrations of chlorogenic acid increased as the RS progressed. The HT29 cell line was treated with MEAM for 48 h, and all MEAM had a cytotoxic effect, reported by MTT assay, nevertheless, the strongest effect was associated with the presence of chlorogenic acid. MEAM induced apoptosis and cell cycle arrest in phase G0/G1, reported by flow cytometry. Moreover, MEAM inhibited cell migration evidenced by the wound healing assay. On the other hand, MEAM significantly reduced expression of mRNA of tumor necrosis factor-alpha and cyclooxygenase 2. These effects comprise important inhibition of some hallmarks of cancer. This, in turn, may provide interesting guidelines for developing antitumoral intervention agents.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Persea , Humanos , Frutas/química , Antioxidantes/metabolismo , Persea/química , Metanol , Ácido Clorogênico/análise , Extratos Vegetais/química , Células HT29 , Neoplasias Colorretais/tratamento farmacológico
9.
Sci Rep ; 14(1): 3100, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326490

RESUMO

In recent years, probiotics and their derivatives have been recognized as important therapeutic agents in the fight against cancer. Therefore, this study aimed to investigate the anticancer effects of membrane vesicles (MVs) from Lentilactobacillus buchneri strain HBUM07105 probiotic isolated from conventional and unprocessed yogurt in Arak province, Iran, against gastric and colon cancer cell lines. The MVs were prepared from the cell-free supernatant (CFS) of L. buchneri and characterized using field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) and SPS-PAGE techniques. The anticancer activity of MVs was evaluated using MTT, flow cytometry, qRT-PCR techniques, and a scratch assay. The study investigated the anti-adenocarcinoma effect of MVs isolated from L. buchneri on a human gastric adenocarcinoma cell line (AGS) and a human colorectal adenocarcinoma cell line (HT-29) at 24, 48, and 72-h time intervals. The results demonstrated that all prepared concentrations (12.5, 25, 50, 100, and 200 µg/mL) of MVs reduced the viability of both types of human adenocarcinoma cells after 24, 48, and 72 h of treatment. The analysis of the apoptosis results revealed that the percentage of AGS and HT-29 cancer cells in the early and late stages of apoptosis was significantly higher after 24, 48, and 72 h of treatment compared to the untreated cancer cells. After treating both AGS and HT-29 cells with the MVs, the cells were arrested in the G0/G1 phase. These microvesicles demonstrate apoptotic activity by increasing the expression of pro-apoptotic genes (BAX, CASP3, and CASP9). According to the scratch test, MVs can significantly decrease the migration of HT-29 and AGS cancer cells after 24, 48, and 72 h of incubation compared to the control groups. The MVs of L. buchneri can also be considered a potential option for inhibiting cancer cell activities.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Células HT29 , Linhagem Celular Tumoral , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias Gástricas/patologia , Adenocarcinoma/patologia , Proliferação de Células
10.
Bioorg Med Chem ; 100: 117611, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309200

RESUMO

Systemic inflammatory response syndrome (SIRS), an exaggerated defense response of the organism to a noxious stressor, involves a massive inflammatory cascade that ultimately leads to reversible or irreversible end-organ dysfunction and even death. Suppressing RIPK1, a key protein in necroptosis pathway, has been proven to be an effective therapeutic strategy for inflammation and SIRS. In this study, a series of novel biaryl benzoxazepinone RIPK1 inhibitors were designed and synthesized by introducing different aryl substituents at the C7 position of benzoxazepinone. As a result, p-cyanophenyl substituted analog 19 exhibited the most potent in vitro anti-necroptotic effect in HT-29 cells (EC50 = 1.7 nM) and superior protection against temperature loss and death in mice in the TZ-induced SIRS model compared to GSK'772. What's more, in vivo analysis of the levels of inflammatory factors in mice also revealed that compound 19 had better anti-inflammatory activity than GSK'772.


Assuntos
Inflamação , Proteína Serina-Treonina Quinases de Interação com Receptores , Síndrome de Resposta Inflamatória Sistêmica , Animais , Humanos , Camundongos , Apoptose , Células HT29 , Inflamação/metabolismo , Necrose , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/induzido quimicamente , Síndrome de Resposta Inflamatória Sistêmica/tratamento farmacológico , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Azepinas/química , Azepinas/farmacologia
11.
Int J Biol Macromol ; 261(Pt 1): 129478, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237822

RESUMO

Shigella flexneri is a prevalent foodborne and waterborne pathogen that threatens human health. Our previous research indicated that the Lactiplantibacillus plantarum Y12 exopolysaccharide (L-EPS) potentially inhibited the pathogenicity of S. flexneri. The in vitro results of this study demonstrated that L-EPS effectively mitigated the symptoms induced by S. flexneri in HT-29 cells, including inhibited gene expression levels of IL-1ß, IL-6, IL-8, TNF-α, TLR 2/4, and NOD1/2; decreased apoptosis ratio; and alleviated damage degree of intestinal barrier function (Zona occludens 1, Occludin, and Claudin-1). The in vivo results demonstrated that S. flexneri treated with L-EPS elicited mild adverse physiological manifestations, an inflammatory response, and tissue damage. The infection of S. flexneri caused significant alterations in the abundance of phylum (Firmicutes, Bacteroidota, Actinobacteriota, and Proteobacteria), family (Lachnospiraceae, Muribaculaceae, Rikenellaceae, Prevotellaceaea, Ruminococcaceae, and Lactobaillaceae), and genus (Escherichia Shigella and Lachnospirillaceae NK4A136 group) within the cecal microbiota. These changes were accompanied by perturbations in taurine and hypotaurine metabolism, tricarboxylic acid (TCA) cycle activity, arginine biosynthesis, and histidine metabolic pathways. However, intervention with L-EPS attenuated the dysbiosis of cecal microbiota and metabolic disturbances. In summary, our research suggested a potential application of L-EPS as a functional food additive for mitigating S. flexneri infection.


Assuntos
Shigella flexneri , Humanos , Virulência , Células HT29 , Transporte Biológico
12.
Cell Biochem Biophys ; 82(1): 247-257, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38183602

RESUMO

The present study aimed to investigate the purified protein from the epidermal mucus of marine catfish Tachysurus dussumieri on the human colon cancer cell line. The bioactive protein was purified with the Anion exchange chromatography and the collected fractions were then tested to assess cell viability in HT 29 cells through the MTT assay. The most responding active purified protein fraction (PPF III) was characterized with the MALDI-TOF/MS it shared a similar homology and sequence with 90% of antimicrobial peptides from external secretions of amphibians. Typical morphological changes of apoptotic cells, including cell shrinkage and detachment, DNA damage, and nuclear condensation were observed after the treatment of bioactive protein. PPF III triggered ROS, increasing the LDH activity, disruption of mitochondrial membrane potential, and upregulation of Cleaved caspase 3/9, Cytochrome-c, Bax, and downregulation of Bcl-2 protein and gene expression on HT 29 cells.


Assuntos
Peixes-Gato , Neoplasias do Colo , Animais , Humanos , Apoptose , Peixes-Gato/metabolismo , Extratos Vegetais/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Células HT29 , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial
13.
J Cell Biochem ; 125(2): e30517, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38224178

RESUMO

Colorectal cancer (CRC) is the third most common and deadliest cancer globally. Regimens using 5-fluorouracil (5FU) and Oxaliplatin (OXA) are the first-line treatment for CRC, but tumor recurrence is frequent. It is plausible to hypothesize that differential cellular responses are triggered after treatments depending on the genetic background of CRC cells and that the rational modulation of cell tolerance mechanisms like autophagy may reduce the regrowth of CRC cells. This study proposes investigating the cellular mechanisms triggered by CRC cells exposed to 5FU and OXA using a preclinical experimental design mimicking one cycle of the clinical regimen (i.e., 48 h of treatment repeated every 2 weeks). To test this, we treated CRC human cell lines HCT116 and HT29 with the 5FU and OXA, combined or not, for 48 h, followed by analysis for two additional weeks. Compared to single-drug treatments, the co-treatment reduced tumor cell regrowth, clonogenicity and stemness, phenotypes associated with tumor aggressiveness and poor prognosis in clinics. This effect was exerted by the induction of apoptosis and senescence only in the co-treatment. However, a week after treatment, cells that tolerated the treatment had high levels of autophagy features and restored the proliferative phenotype, resembling tumor recurrence. The pharmacologic suppression of early autophagy during its peak of occurrence, but not concomitant with chemotherapeutics, strongly reduced cell regrowth. Overall, our experimental model provides new insights into the cellular mechanisms that underlie the response and tolerance of CRC cells to 5FU and OXA, suggesting optimized, time-specific autophagy inhibition as a new avenue for improving the efficacy of current treatments.


Assuntos
Neoplasias Colorretais , Humanos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Neoplasias Colorretais/genética , Recidiva Local de Neoplasia , Células HT29 , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Apoptose , Autofagia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética
14.
Medicina (Kaunas) ; 60(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256402

RESUMO

Background and Objectives: Colorectal cancer (CRC) is a major global health challenge. The BRAF V600E mutation, found in 8-12% of CRC patients, exacerbates this by conferring poor prognosis and resistance to therapy. Our study focuses on the efficacy of the HAMLET complex, a molecular substance derived from human breast milk, on CRC cell lines and ex vivo biopsies harboring this mutation, given its previously observed selective toxicity to cancer cells. Materials and Methods: we explored the effects of combining HAMLET with the FOLFOX chemotherapy regimen on CRC cell lines and ex vivo models. Key assessments included cell viability, apoptosis/necrosis induction, and mitochondrial function, aiming to understand the mutation-specific resistance or other cellular response mechanisms. Results: HAMLET and FOLFOX alone decreased viability in CRC explants, irrespective of the BRAF mutation status. Notably, their combination yielded a marked decrease in viability, particularly in the BRAF wild-type samples, suggesting a synergistic effect. While HAMLET showed a modest inhibitory effect on mitochondrial respiration across both mutant and wild-type samples, the response varied depending on the mutation status. Significant differences emerged in the responses of the HT-29 and WiDr cell lines to HAMLET, with WiDr cells showing greater resistance, pointing to factors beyond genetic mutations influencing drug responses. A slight synergy between HAMLET and FOLFOX was observed in WiDr cells, independent of the BRAF mutation. The bioenergetic analysis highlighted differences in mitochondrial respiration between HT-29 and WiDr cells, suggesting that bioenergetic profiles could be key in determining cellular responses to HAMLET. Conclusions: We highlight the potential of HAMLET and FOLFOX as a combined therapeutic approach in BRAF wild-type CRC, significantly reducing cancer cell viability. The varied responses in CRC cell lines, especially regarding bioenergetic and mitochondrial factors, emphasize the need for a comprehensive approach considering both genetic and metabolic aspects in CRC treatment strategies.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas B-raf , Humanos , Sobrevivência Celular , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Células HT29 , Dinâmica Mitocondrial , Proteínas Proto-Oncogênicas B-raf/genética
15.
BMC Complement Med Ther ; 24(1): 38, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218817

RESUMO

BACKGROUND: Standard cancer treatments show a lack of selectivity that has led to the search for new strategies against cancer. The selective elimination of cancer cells modulating the redox environment, known as "selective oxycution", has emerged as a viable alternative. This research focuses on characterizing the unexplored Escallonia genus plant extracts and evaluating their potential effects on cancer's redox balance, cytotoxicity, and activation of death pathways. METHODS: 36 plant extracts were obtained from 4 different species of the Escallonia genus (E. illinita C. Presl, E. rubra (Ruiz & Pav.) Pers., E. revoluta (Ruiz & Pav.) Pers., and E. pulverulenta (Ruiz & Pav.) Pers.), which were posteriorly analyzed by their phytoconstituents, antioxidant capacity, and GC-MS. Further, redox balance assays (antioxidant enzymes, oxidative damage, and transcription factors) and cytotoxic effects (SRB, ∆Ψmt, and caspases actives) of those plant extracts were analyzed on four cell lines (HEK-293T, MCF-7, HT-29, and PC-3). RESULTS: 36 plant extracts were obtained, and their phytoconstituents and antioxidant capacity were established. Further, only six extracts had EC50 values < 10 µg*mL- 1, indicating high toxicity against the tested cells. From those, two plant extracts were selective against different cancer cell lines: the hexane extract of E. pulverulenta´s stem was selective for HT-29, and the ethyl acetate extract of E. rubra´s stem was selective for PC-3. Both extracts showed unbalanced redox effects and promoted selective cell death. CONCLUSIONS: This is the first study proving "selective oxycution" induced by Chilean native plant extracts.


Assuntos
Magnoliopsida , Neoplasias , Humanos , Antioxidantes/farmacologia , Estresse Oxidativo , Extratos Vegetais/farmacologia , Oxirredução , Células HT29 , Neoplasias/tratamento farmacológico
16.
Nat Prod Res ; 38(5): 829-837, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37125812

RESUMO

Aspidiatas C and D (1 and 2), two new spirostanol saponins, were isolated along with two known compounds, (25 R*)-spirost-5-en-3ß-yl α-L-rhamnopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→4)-[α-L-rhamnopyranosyl-(1→2)]-ß-D-glucopyranoside (3), (25 R*)-spirost-5-en-3ß-yl α-L-rhamnopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→4)-ß-D-glucopyranoside (4) from the whole plant of Aspidistra triradiata collected in Vietnam. The chemical structures were determined by HRESIMS, 1D- and 2D-NMR analysis, and comparison with published data. Compound 3 exhibited potent cytotoxicity against MCF7, HepG2, SK-LU-1, and HT-29 human cancer cell lines with IC50 values ranging from 0.19 to 0.65 µM. Compounds 1, 2, and 4 displayed moderate cytotoxic effects with IC50 values ranging from 12.32 to 82.27 µM. Compounds 1-4 were isolated from the genus Aspidistra for the first time.


Assuntos
Antineoplásicos , Saponinas , Espirostanos , Humanos , Saponinas/farmacologia , Saponinas/química , Antineoplásicos/química , Células HT29 , Vietnã
17.
Biol Trace Elem Res ; 202(3): 1288-1304, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37392361

RESUMO

As a leading global cause of mortality, cancer continues to pose a significant challenge. The shortcomings of prevalent cancer treatments, such as surgery, radiation therapy, and chemotherapy, necessitate the exploration of alternative therapeutic strategies. Selenium nanoparticles (SeNPs) have emerged as a promising solution, with their synthesis being widely researched due to their potential applications. Among the diverse synthesis methods for SeNPs, the green chemistry approach holds a distinctive position within nanotechnology. This research delves into the anti-proliferative and anticancer properties of green-synthesized SeNPs via the cell-free supernatant (CFS) of Lactobacillus casei (LC-SeNPs), with a specific focus on MCF-7 and HT-29 cancer cell lines. SeNPs were synthesized employing the supernatant of L. casei. The characterization of these green-synthesized SeNPs was performed using TEM, FE-SEM, XRD, FT-IR, UV-vis, energy-dispersive X-ray spectroscopy, and DLS. The biological impact of LC-SNPs on MCF-7 and HT-29 cancer cells was examined via MTT, flow cytometry, scratch tests, and qRT-PCR. Both FE-SEM and TEM images substantiated the spherical shape of the synthesized nanoparticles. The biosynthesized LC-SNPs reduced the survival of MCF-7 (by 20%) and HT-29 (by 30%) cells at a concentration of 100 µg/mL. Flow cytometry revealed that LC-SNPs were capable of inducing 28% and 23% apoptosis in MCF-7 and HT-29 cells, respectively. In addition, it was found that LC-SNPs treated MCF-7 and HT-29 cells were arrested in the sub-G1 phase. Gene expression analysis indicated that the expression levels of the CASP3, CASP9, and BAX genes were elevated after treating MCF-7 and HT-29 cells with LC-SNPs. Further, SeNPs were observed to inhibit migration and invasion of MCF-7 and HT-29 cancer cells. The SeNPs, produced via L. casei, demonstrated strong anticancer effects on MCF-7 and HT-29 cells, suggesting their potential as biological agents in cancer treatment following additional in vivo experiments.


Assuntos
Neoplasias da Mama , Neoplasias do Colo , Lacticaseibacillus casei , Nanopartículas , Selênio , Humanos , Feminino , Selênio/metabolismo , Neoplasias da Mama/tratamento farmacológico , Células HT29 , Células MCF-7 , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas/química , Neoplasias do Colo/tratamento farmacológico , Apoptose , Pontos de Checagem do Ciclo Celular
18.
Appl Biochem Biotechnol ; 196(2): 1044-1057, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37318687

RESUMO

The study aimed to determine the expression of miR451 in colorectal cancer (CRC) subjects with CRC cells, and the role of miR451 in colorectal cancer cells. In October 2020, ATC purchased CRC and normal mucosal cell lines of CRC and implanted them in DMEM with 10% fetal serum. The suitability of the HT29 cell line is verified using the STR profile. In an incubator with 5% CO2, enlarged cells were placed at 37 °C. TCGA data was used to select the top 120 patients with a high voice and the lowest 120 patients with a low voice. Cells were collected and coated with Annexin V and PE according to the manufacturer's instructions after 24.0 h. After that, the cells were separated. Cells were also tested using flow cytometry. HCT-120 cells were transplanted into a concentration of 5×105/ml cells in 6-source plates. HCT120 cells in the experimental group were combined with miR451 mimics, miR451 inhibitors, or miR451 miR + SMAD4B for 12 h at 37 °C, and cells were collected 24 h later at 37 °C. The sample was injected with 5 ml of Annexin VFITC and PE. Compared with normal colorectal mucosal cells, CRC cell lines decreased miR451 expression levels (fetal human cells (FHC) and HCoEpiC). Then, the HCT120 cells were transfected with miR451 inhibitors, and 72 h after transfection, say of miR451 was normal. There was a significant decrease in cell function in the miR451mimic groups, but an increase when the miR451 was blocked. The proliferation of cancer cells was prevented and chemotherapy was effective when miR451 was overexpressed. The SMAD4 gene provides instructions for making a protein involved in transmitting chemical signals from the cell surface to the nucleus. The SMAD4B expression was tested by RT-qPCR and Western blotting after 72.0 h of transmission. The mRNA and protein expression of SMAD4B decreased significantly when miR451 was significantly higher than when inhibited, as revealed in the results of this study. Seventy-two hours after transplantation, mRNA levels and SMAD4B proteins were measured in HCT120 cells. In addition, the researchers in this study investigated whether miR451 was associated with SMAD4B-directed control of CRC growth and migration. It was found that SMAD4B is highly expressed in both CRC and para-cancer tissues while using the TCGA database to detect SMAD4B expression. Patients with CRC with SMAD4B have a severe prognosis. MiR451 is sensitive to depressive disorders by targeting SMAD4B, according to these studies. We found that miR451 inhibited cell growth and migration, made CRC cells more readily available in chemotherapy, and did so by targeting SMAD4B. The findings suggest that miR451 and its genetic predisposition, SMAD4B, may help predict the prognosis and course of cancer patients. Treatments that target the miR451/SMAD4B axis may be helpful to people with CRC.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Movimento Celular/genética , Células HT29 , Proliferação de Células/genética , RNA Mensageiro , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
19.
Int J Biol Macromol ; 257(Pt 2): 127527, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37866558

RESUMO

Adhesion to gastrointestinal tract is crucial for bifidobacteria to exert their probiotic effects. Our previous work found that bile salts significantly enhance the adhesion ability of Bifidobacterium longum BBMN68 to HT-29 cells. In this study, trypsin-shaving and LC-MS/MS-based surface proteomics were employed to identify surface proteins involved in bile stress response. Among the 829 differentially expressed proteins, 56 up-regulated proteins with a fold change >1.5 were subjected to further analysis. Notably, the minor pilin subunit FimB was 4.98-fold up-regulated in response to bile stress. In silico analysis and RT-PCR confirmed that gene fimB, fimA and srtC were co-transcribed and contributed to the biosynthesis of sortase-dependent pili Pil1. Moreover, scanning electron microscopy and immunogold electron microscopy assays showed increased abundance and length of Pil1 on BBMN68 under bile stress. As the major pilin subunit FimA serves as adhesion component of Pil1, an inhibition assay using anti-FimA antibodies further confirmed the critical role of Pil1 in mediating the adhesion of BBMN68 to HT-29 cells under bile stress. Our findings suggest that the up-regulation of Pil1 in response to bile stress enhances the adhesion of BBMN68 to intestinal epithelial cells, highlighting a novel mechanism of gut persistence in B. longum strains.


Assuntos
Bifidobacterium longum , Humanos , Bifidobacterium longum/genética , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/farmacologia , Bile , Regulação para Cima , Células HT29 , Cromatografia Líquida , Espectrometria de Massas em Tandem
20.
Cancer Sci ; 115(1): 270-282, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37942534

RESUMO

Colorectal cancer (CRC) is a globally common cancer, and the serum carcinoembryonic antigen (sCEA) is widely applied as a diagnostic and prognostic tumor marker in CRC. This study aimed to elucidate the mechanism of CEA expression and corresponding clinical features to improve prognostic assessments. In CRC cells, hypomethylation of the CEACAM5 promoter enhanced CEA expression in HCT116 and HT29 cells with 5-aza-2'-deoxycytidine (5-Aza-dC) treatment. Our clinical data indicated that 64.7% (101/156) of CRC patients had an sCEA level above the normal range, and 76.2% (77/101) of those patients showed a lower average CpG methylation level of the CEACAM5 promoter. The methylation analysis showed that both CRC cell lines and patient samples shared the same critical methylation CpG regions at -200 to -500 and -1000 to -1400 bp of the CEACAM5 promoter. Patients with hypermethylation of the CEACAM5 promoter showed features of a BRAF mutation, TGFB2 mutation, microsatellite instability-high, and preference for right-sided colorectal cancer and peritoneal seeding presentation that had a similar clinical character to the consensus molecular subtype 1 (CMS1) of colorectal cancer. Additionally, hypermethylation of the CEACAM5 promoter combined with evaluated sCEA demonstrated the worst survival among the patients. Therefore, the methylation status of the CEACAM5 promoter also served as an effective biomarker for assessing disease prognosis. Results indicated that DNA methylation is a major regulatory mechanism for CEA expression in colorectal cancer. Moreover, our data also highlighted that patients in a subgroup who escaped from inactivation by DNA methylation had distinct clinical and pathological features and the worst survival.


Assuntos
Antígeno Carcinoembrionário , Neoplasias Colorretais , Humanos , Antígeno Carcinoembrionário/genética , Antígeno Carcinoembrionário/metabolismo , Relevância Clínica , Neoplasias Colorretais/patologia , Metilação de DNA/genética , Decitabina , Células HT29 , Regulação Neoplásica da Expressão Gênica , Ilhas de CpG/genética , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...